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I
t is the best of times and it is the worst of times in the 
world of datacenter memory technology. According to 
IDC (International Data Corporation), DRAM (dynamic 
random-access memory) revenues exceeded $100 
billion in 2022. Yet, the anticipated growth rate is 

hugging the zero line, and many producers either reported 
loss-making quarters or are rumored to do so soon. 
From the perspective of datacenter customers, by some 
estimates, the cost of renting memory ranges from $20 to 
$30 per gigabyte per year, for a resource that costs only 
$2 to $4 to procure outright. On top of this, SaaS (software 
as a service) end users, for example, are forced to rent all 
the memory that they will need up front. By some rough 
estimates, they then end up using less than 25 percent of 
that memory more than 75 percent of the time.10

CXL (Compute Express Link), a new technology emerging 
from the hardware side,9 is promising to provide far memory. 
Thus, there will be more memory capacity and perhaps even 
more bandwidth, but at the expense of greater latency. 
Optimization will first, seek to keep memory in far tiers 
colder, and, second, minimize the rates of both access 
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into and promotion out of these tiers.1,5 Third, proactive 
promotion and demotion techniques being developed for 
far memory promote/demote whole objects instead of 
one cache line at a time to take advantage of bulk caching 
and eviction in order to avoid repeatedly incurring its 
long latency. Finally, offloading computations with many 
dependent accesses to a near-memory processor is already 
being seen as a way to keep the latency of memory out 
of the denominator of application throughput.11 With far 
memory, this will be a required optimization.

CHASING POINTERS “NEAR” MEMORY
Applications that operate over richly connected data in 
memory engage heavily in pointer-chasing operations 
either directly (e.g., graph processing in deep-learning 
recommendation models) or indirectly (e.g., B+ tree index 
management in databases). Figure 1 shows an example 
of pointer-chasing applications in far memory: [1] graph 
traversal, [2] key lookup in a B+ index, and [3] collision 
resolution under open hashing. 
Data from previous work2 suggests that as data structures 
scale beyond the memory limits of a single host, causing 
application data to spill into far memory, programmers are 
forced to make complex decisions about function and data 
placement, intercommunication, and orchestration.

Performance characteristics of far memory
By default, pointers (like the internode ones in figure 1) are 
defined in the virtual address space of the process that 
created them. Because of this, if left unoptimized, pointer-
chasing operations and their dependent accesses can 
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overwhelm the microarchitecture resources that support 
memory-level parallelism (e.g., reorder buffers) even 
on a single CPU with local memory. With latencies that 
can range from 150ns to more than 300ns,2 far memory 
further compounds this problem.

In a distributed setting, a simple-minded pointer-chasing 
offload without taking care of virtual-to-physical address 
translation results in chatty internode coordination with 
the parent process.15 Effective optimization of pointer-
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chasing operations entails minimizing communication 
between the near-memory processor executing the 
traversal and the server running the parent process.

Developing far memory-ready applications
Evidence from HPC (high-performance computing) and 
database workloads points to the extreme inefficiency of 
pointer-rich sparse memory operations on CPUs and GPUs 
alike,4,14 in some cases hitting less than one percent of peak 
performance. This leads applications to want to offload 
such work to near-memory processors. In the case of far 
memory, that near-memory processor is itself outside the 
translation context of the parent process of the pointer-
rich data. Pointers therefore must make sense everywhere 
in these new heterogeneous disaggregated systems.

In order to lower infrastructure rent, cloud applications 
also wish to exploit disaggregated far memory as a 
fungible memory resource that can grow and shrink with 
the amount of data. Moreover, they want to independently 
scale their memory and compute resources. For example, 
database services want to flex compute up or down in 
proportion to query load. Pointer-rich data in far memory 
must be shareable at low overhead between existing and 
new compute instances.

PRIOR WORK ON FAR MEMORY
Pointers in traditional operating systems were valid only in 
the memory space of the parent process. Sharing pointer-
rich data among processes, nodes, and devices therefore 
required serialization-deserialization. This limitation 
remained even when prior art was recently extended by 
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taking an approach of tombstoning dangling references 
to data demoted to far memory using special pointers.7,16 
Those pointers could be dereferenced only from the 
original context of data creation, precluding independent 
scaling of memory and computation. 

Global address spaces such as PGAS (partitioned global 
address space) support a limited form of global pointers 
that persist only for the lifetime of a set of processes 
across multiple nodes. NVM (nonvolatile memory) libraries 
such as PMDK (Persistent Memory Development Kit) 
support object-based pointers, but their “large” storage-
format pointers are more than 64 bits long, and their 
traversal cannot be offloaded.

Commercial virtualization frameworks such as 
VMware’s Nu proclets13 can maintain only the illusion 
of global pointers by compromising security (by turning 
address space layout randomization off, for example).

Microsoft CompuCache14 also supported global pointers, 
but by using a heavy database runtime atop full VMs even 
on disaggregated memory devices. All pointers, whether 
at hosts or in the CompuCache, are VM-local only. Pointer 
chasing across devices requires repeatedly returning to the 
host.

Teleport15 supported pointer-chasing offload to remote 
memory but by directed, on-demand shipping of the 
virtual-to-physical translation context to the target locale 
of each function shipped.

Prior work on OS constructs for far memory is 
therefore missing a foundation of globally invariant 
pointers that can be shared with and dereferenced by any 
node or device in a cluster containing far memory.
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INVARIANT POINTERS
When organizing data at object grain, a globally invariant 
pointer must contain the ID of the object containing 
the target data, as well as an offset to that data. This 
object ID can be interpreted anywhere the pointer can 
be dereferenced. Ideally, invariant pointers should: (1) be 
no larger than 64 bits; and (2) permit access to partially 
resident objects. Existing approaches do not meet the first 
criterion (e.g., PMDK) or the second criterion (e.g., AIFM12); 
AIFM (application-integrated far memory) has a different 
pointer form for resident and nonresident objects. 
Providing truly globally invariant pointers, however, is 
necessary for offloading “run anywhere” code.

Twizzler3 is an operating system that introduces globally 
invariant pointers by using a context local to the object in 
which the pointer is stored, shortening its representation 
while allowing any CPU that can read the pointer to fully 
resolve its destination. This is done using an FOT (foreign 
object table) that is part of each object in the system, 
ensuring that any individual object is self-contained.

An object’s FOT contains identifying information for 
each foreign object that is the destination for a pointer 
in the object. Since these are stored in an ordered table, 
stored pointers use the index into the FOT as a stand-in 
for the full addressing information, a translation process 
shown in figure 2. This approach allows pointers to remain 
small: a 64-bit pointer can, for example, include a 24-bit 
“local” object ID and 40-bit offset. While this limits the 
number of foreign objects that can be referenced from a 
single object to 224, different objects have their own FOTs 
and can reference a different set of objects, so the total 
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number of objects in the system is limited only by the size 
of an object ID. 

This approach also allows for a wide range of resolvers 
that translate identifying information in the FOT into an 
object ID. For example, the FOT might contain a static 
object ID or the equivalent of a file-system name to be 
resolved to an object ID by a name resolver. There is no 
requirement that a name resolve to the same object ID in 
different places: An object named /var/log/syslog might 
resolve to different object IDs on different system nodes. 
Name resolvers themselves can be pluggable: The FOT 
needs only to identify the resolver in a way that any node in 
the system can run the resolver to return an object ID.

While the first access to a foreign object may be 
relatively slow, subsequent accesses are very fast, since 
the resolution to an object ID is cached. The system maps 
the object into the node’s “guest physical” address space, 
leveraging MMU (memory management unit) hardware 
already in use for virtualization. It then maps the guest 
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physical space in which the object resides into the guest 
virtual space for any processes that reference the object, 
using extended page tables to remove software from 
the CPU load/store path and allowing the system to run 
at memory speed. This is necessary for efficiency: Even 
minimal system software interaction on each load and 
store will slow the computation significantly.

Preliminary experiments3 show that Twizzler’s approach 
is effective at preserving low-latency pointer dereferencing 
for both intra-object and inter-object invariant pointers. 
On an Intel Xeon Gold CPU running at 2.3GHz, intra-object 
pointer dereferences take about 0.4ns, approximately the 
same time as “normal” dereferences. Cached inter-object 
pointer dereferences take 3.2ns, somewhat slower than 
intra-object dereferences but still sufficiently fast because 
relatively few such references are expected, given multi-
megabyte objects. The first reference to a foreign object 
is slower, at 28ns, but still reasonable. If name resolution is 
more complex than interpreting a static full-length (128-bit) 
object ID, it would be longer still; however, these penalties 
are paid only once, regardless of how many times pointers 
from object A to object B are dereferenced in the same 
process.

Benchmarks on both microscale (in-memory key/
value store) and macroscale (YCSB [Yahoo! Cloud Serving 
Benchmark] using different back ends) likewise show 
excellent performance for this approach. The top graph 
in figure 3 shows performance of the YCSB benchmark on 
SQLite using four back ends: the native SQLite back end; 
the LMDB (Lightning Memory-mapped Database) back end, 
which leverages mmap; our implementation of a PMDK 
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back end, which uses a red-black tree under PMDK; and 
Twizzler, which uses a red-black tree with the invariant 
pointer approach. 

The invariant pointer approach outperforms every other 
approach while providing the flexibility of “run anywhere” 
invariant pointers. The graph on the bottom of figure 3 
similarly shows that these invariant pointers provide lower 
latency than other approaches because of the simplicity 
of the programming model and the low overhead for 
dereferencing pointers. PMDK, in particular, is significantly 
slower because its pointers are 128 bits long, requiring 
additional register space and memory operations to read 
and dereference. 

It is important to note that the PMDK and Twizzler 
implementations are running the same back-end code, 
with changes made only to accommodate the different 
programming models; this shows the benefit of using 64-
bit pointers local to an object context rather than 128-bit 
pointers, as PMDK does.

Elephance MemOS is a fork of Twizzler being developed 
to run on CXL far memory devices. It will be ported 
and optimized for the SoCs (systems-on-chip) used as 
controllers in CXL-disaggregated memory nodes.

PROGRAMMING WITH MEMORY OBJECTS  
AND INVARIANT POINTERS
For software developers, what does memory 
disaggregation mean and how will systems be built around 
it? The architecture of such systems will aim to hide the 
details from the majority of programmers, so their code 
will not need to change to run on these new systems. 
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There are three ways in which systems can be built 
to provide disaggregated memory: application libraries, 
modification to the operating system’s memory system, 
and changes beneath the operating system at the 
hardware layers, as seen in figure 4. In the figure, a set 
of application servers is connected to a set of MemOS 
nodes over a shared bus. Pointer-rich application data in 
far memory lives on MemOS nodes. Pointers can be: (1) 
inter-object and on the same device, (2) inter-object across 
devices, or (3) intra-object.

It is likely that the first way that disaggregated memory 
will be made available will be through application libraries 
linked directly into the application, seen in (A) at the top of 
figure 4. The memory shim acts as a specialized memory 
allocator that knows how to handle remote memory using 
a MAP (memory access protocol). The MAP may depend 
on a current technology such as RDMA (remote direct 
memory access), or may be something newer such as CXL3. 

Many languages, such as Python, which depend on the 
C library for memory, will be able to use the memory shim 
to handle memory for objects in the language, freeing the 
Python programmer from having to know anything about 
disaggregated memory. For languages such as C and C++, 
which handle pointers directly, the programmer will have 
to work with the memory shim APIs in order to manage 
remote memory. The prevalence of Python and similar 
managed memory languages in big data and machine-
learning applications means that programmers in those 
fields can use disaggregated memory in a transparent 
way, no matter where the memory shim is located in the 
software stack.
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Extending the operating system’s virtual memory 
system to integrate with the memory shim is the next 
logical place to interpose disaggregated memory in the 
stack, seen in (B) in figure 5. Again, the specific MAP is 
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not exposed to the kernel developer, only the memory 
shim APIs. The Linux operating system already has 
HMM (heterogeneous memory management),8 which 
is a natural place to slot in the memory shim. Once the 
shim is integrated into the operating system itself, all 
applications can use disaggregated memory transparently 
without modifications to their source code or linking with 
specialized libraries.

The deepest that far memory can be placed in the stack 
is in the hardware itself. Memory controllers integrated 
in CPUs from Intel and AMD are already starting to 
support early versions of CXL disaggregated memory. 
Future, more featureful controllers will present memory 
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to the operating system both locally and remotely in a 
transparent manner, but, like the other two cases, will 
require a MAP to be interposed between the hardware and 
the remote memory. The protocol in this instance will be 
CXL 3.

While putting the memory shim into hardware will 
likely result in the highest bandwidth, lowest latency, and 
maximum portability, there are reasons to continue to use 
a memory shim as a linked library into the software. First 
and foremost is the level of control that linking directly 
to the memory shim gives to the programmer. Once such 
functionality is embedded into the operating system or 
the memory controller, application programmers will lose 
control and visibility into the remote memory system. 
While many will be happy not to have to manage memory 
on their own, applications will remain where such control 
is a feature. Novel memory architectures for distributed 
memory must first be tried in software, and some may be 
too specialized ever to be implemented in hardware.

Consider a memory system where pointers are globally 
invariant, which will be possible with MemOS but is not yet 
common in pointer-based systems. Building and debugging 
such a system in software makes it possible to rapidly 
iterate on the design—impossible in a memory controller 
and certainly more difficult to debug in the operating 
system. Applications that can use globally invariant 
pointers have distinct advantages because computation 
can take place on any node without the application having 
to know where a pointer might reside. Furthermore, it will 
be possible to move code, rather than data, to achieve 
computational efficiency—again, because no matter which 
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compute node a pointer resides on, the pointer itself is the 
global handle that computation depends on, rather than an 
address in local memory, as things stand today.

KEY TAKEAWAYS
Effectively exploiting emerging far-memory technology 
requires consideration of operating on richly connected 
data outside the context of the parent process. Operating-
system technology in development offers help by exposing 
abstractions such as memory objects and globally 
invariant pointers that can be traversed by devices 
and newly instantiated compute. Such ideas will allow 
applications running on future heterogeneous distributed 
systems with disaggregated memory nodes to exploit 
near-memory processing for higher performance and to 
independently scale their memory and compute resources 
for lower cost.
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