
acmqueue | may-june 2023 75

memory

I
t is the best of times and it is the worst of times in the
world of datacenter memory technology. According to
IDC (International Data Corporation), DRAM (dynamic
random-access memory) revenues exceeded $100
billion in 2022. Yet, the anticipated growth rate is

hugging the zero line, and many producers either reported
loss-making quarters or are rumored to do so soon.
From the perspective of datacenter customers, by some
estimates, the cost of renting memory ranges from $20 to
$30 per gigabyte per year, for a resource that costs only
$2 to $4 to procure outright. On top of this, SaaS (software
as a service) end users, for example, are forced to rent all
the memory that they will need up front. By some rough
estimates, they then end up using less than 25 percent of
that memory more than 75 percent of the time.10

CXL (Compute Express Link), a new technology emerging
from the hardware side,9 is promising to provide far memory.
Thus, there will be more memory capacity and perhaps even
more bandwidth, but at the expense of greater latency.
Optimization will first, seek to keep memory in far tiers
colder, and, second, minimize the rates of both access

A rethink of
how data and
computations
should be
organized

ETHAN MILLER,

 GEORGE NEVILLE-NEIL,

ACHILLES BENETOPOULOS,

PANKAJ MEHRA,

AND DANIEL BITTMAN

1 of 19 TEXT
ONLY

Pointers
 in Far Memory

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3606029&domain=pdf&date_stamp=2023-07-17

acmqueue | may-june 2023 76

memory

into and promotion out of these tiers.1,5 Third, proactive
promotion and demotion techniques being developed for
far memory promote/demote whole objects instead of
one cache line at a time to take advantage of bulk caching
and eviction in order to avoid repeatedly incurring its
long latency. Finally, offloading computations with many
dependent accesses to a near-memory processor is already
being seen as a way to keep the latency of memory out
of the denominator of application throughput.11 With far
memory, this will be a required optimization.

CHASING POINTERS “NEAR” MEMORY
Applications that operate over richly connected data in
memory engage heavily in pointer-chasing operations
either directly (e.g., graph processing in deep-learning
recommendation models) or indirectly (e.g., B+ tree index
management in databases). Figure 1 shows an example
of pointer-chasing applications in far memory: [1] graph
traversal, [2] key lookup in a B+ index, and [3] collision
resolution under open hashing.
Data from previous work2 suggests that as data structures
scale beyond the memory limits of a single host, causing
application data to spill into far memory, programmers are
forced to make complex decisions about function and data
placement, intercommunication, and orchestration.

Performance characteristics of far memory
By default, pointers (like the internode ones in figure 1) are
defined in the virtual address space of the process that
created them. Because of this, if left unoptimized, pointer-
chasing operations and their dependent accesses can

2 of 19

acmqueue | may-june 2023 77

memory

overwhelm the microarchitecture resources that support
memory-level parallelism (e.g., reorder buffers) even
on a single CPU with local memory. With latencies that
can range from 150ns to more than 300ns,2 far memory
further compounds this problem.

In a distributed setting, a simple-minded pointer-chasing
offload without taking care of virtual-to-physical address
translation results in chatty internode coordination with
the parent process.15 Effective optimization of pointer-

3 of 19

application
server 1

2

3

application
server

application
server

FIGURE 1: Example of pointer chasing applications in far memory

1

acmqueue | may-june 2023 78

memory

chasing operations entails minimizing communication
between the near-memory processor executing the
traversal and the server running the parent process.

Developing far memory-ready applications
Evidence from HPC (high-performance computing) and
database workloads points to the extreme inefficiency of
pointer-rich sparse memory operations on CPUs and GPUs
alike,4,14 in some cases hitting less than one percent of peak
performance. This leads applications to want to offload
such work to near-memory processors. In the case of far
memory, that near-memory processor is itself outside the
translation context of the parent process of the pointer-
rich data. Pointers therefore must make sense everywhere
in these new heterogeneous disaggregated systems.

In order to lower infrastructure rent, cloud applications
also wish to exploit disaggregated far memory as a
fungible memory resource that can grow and shrink with
the amount of data. Moreover, they want to independently
scale their memory and compute resources. For example,
database services want to flex compute up or down in
proportion to query load. Pointer-rich data in far memory
must be shareable at low overhead between existing and
new compute instances.

PRIOR WORK ON FAR MEMORY
Pointers in traditional operating systems were valid only in
the memory space of the parent process. Sharing pointer-
rich data among processes, nodes, and devices therefore
required serialization-deserialization. This limitation
remained even when prior art was recently extended by

4 of 19

acmqueue | may-june 2023 79

memory

taking an approach of tombstoning dangling references
to data demoted to far memory using special pointers.7,16
Those pointers could be dereferenced only from the
original context of data creation, precluding independent
scaling of memory and computation.

Global address spaces such as PGAS (partitioned global
address space) support a limited form of global pointers
that persist only for the lifetime of a set of processes
across multiple nodes. NVM (nonvolatile memory) libraries
such as PMDK (Persistent Memory Development Kit)
support object-based pointers, but their “large” storage-
format pointers are more than 64 bits long, and their
traversal cannot be offloaded.

Commercial virtualization frameworks such as
VMware’s Nu proclets13 can maintain only the illusion
of global pointers by compromising security (by turning
address space layout randomization off, for example).

Microsoft CompuCache14 also supported global pointers,
but by using a heavy database runtime atop full VMs even
on disaggregated memory devices. All pointers, whether
at hosts or in the CompuCache, are VM-local only. Pointer
chasing across devices requires repeatedly returning to the
host.

Teleport15 supported pointer-chasing offload to remote
memory but by directed, on-demand shipping of the
virtual-to-physical translation context to the target locale
of each function shipped.

Prior work on OS constructs for far memory is
therefore missing a foundation of globally invariant
pointers that can be shared with and dereferenced by any
node or device in a cluster containing far memory.

5 of 19

acmqueue | may-june 2023 80

memory

INVARIANT POINTERS
When organizing data at object grain, a globally invariant
pointer must contain the ID of the object containing
the target data, as well as an offset to that data. This
object ID can be interpreted anywhere the pointer can
be dereferenced. Ideally, invariant pointers should: (1) be
no larger than 64 bits; and (2) permit access to partially
resident objects. Existing approaches do not meet the first
criterion (e.g., PMDK) or the second criterion (e.g., AIFM12);
AIFM (application-integrated far memory) has a different
pointer form for resident and nonresident objects.
Providing truly globally invariant pointers, however, is
necessary for offloading “run anywhere” code.

Twizzler3 is an operating system that introduces globally
invariant pointers by using a context local to the object in
which the pointer is stored, shortening its representation
while allowing any CPU that can read the pointer to fully
resolve its destination. This is done using an FOT (foreign
object table) that is part of each object in the system,
ensuring that any individual object is self-contained.

An object’s FOT contains identifying information for
each foreign object that is the destination for a pointer
in the object. Since these are stored in an ordered table,
stored pointers use the index into the FOT as a stand-in
for the full addressing information, a translation process
shown in figure 2. This approach allows pointers to remain
small: a 64-bit pointer can, for example, include a 24-bit
“local” object ID and 40-bit offset. While this limits the
number of foreign objects that can be referenced from a
single object to 224, different objects have their own FOTs
and can reference a different set of objects, so the total

6 of 19

acmqueue | may-june 2023 81

memory

number of objects in the system is limited only by the size
of an object ID.

This approach also allows for a wide range of resolvers
that translate identifying information in the FOT into an
object ID. For example, the FOT might contain a static
object ID or the equivalent of a file-system name to be
resolved to an object ID by a name resolver. There is no
requirement that a name resolve to the same object ID in
different places: An object named /var/log/syslog might
resolve to different object IDs on different system nodes.
Name resolvers themselves can be pluggable: The FOT
needs only to identify the resolver in a way that any node in
the system can run the resolver to return an object ID.

While the first access to a foreign object may be
relatively slow, subsequent accesses are very fast, since
the resolution to an object ID is cached. The system maps
the object into the node’s “guest physical” address space,
leveraging MMU (memory management unit) hardware
already in use for virtualization. It then maps the guest

7 of 19

FIGURE 2: Stored pointers use the index into the FOT as placeholder

2 2

3

offset B flags

object B

C flags

1 A

data

flags
pointer

foreign object table

2

acmqueue | may-june 2023 82

memory

physical space in which the object resides into the guest
virtual space for any processes that reference the object,
using extended page tables to remove software from
the CPU load/store path and allowing the system to run
at memory speed. This is necessary for efficiency: Even
minimal system software interaction on each load and
store will slow the computation significantly.

Preliminary experiments3 show that Twizzler’s approach
is effective at preserving low-latency pointer dereferencing
for both intra-object and inter-object invariant pointers.
On an Intel Xeon Gold CPU running at 2.3GHz, intra-object
pointer dereferences take about 0.4ns, approximately the
same time as “normal” dereferences. Cached inter-object
pointer dereferences take 3.2ns, somewhat slower than
intra-object dereferences but still sufficiently fast because
relatively few such references are expected, given multi-
megabyte objects. The first reference to a foreign object
is slower, at 28ns, but still reasonable. If name resolution is
more complex than interpreting a static full-length (128-bit)
object ID, it would be longer still; however, these penalties
are paid only once, regardless of how many times pointers
from object A to object B are dereferenced in the same
process.

Benchmarks on both microscale (in-memory key/
value store) and macroscale (YCSB [Yahoo! Cloud Serving
Benchmark] using different back ends) likewise show
excellent performance for this approach. The top graph
in figure 3 shows performance of the YCSB benchmark on
SQLite using four back ends: the native SQLite back end;
the LMDB (Lightning Memory-mapped Database) back end,
which leverages mmap; our implementation of a PMDK

8 of 19

acmqueue | may-june 2023 83

memory 9 of 19

5

4

3

2

sort mean median
query

index
operation

find

SQL-native SQL-LMDB
SQL-PMDK SQL-Twizzler

SQL-native SQL-LMDB
SQL-PMDK SQL-Twizzler

probe

1

0

qu
er

y
la

te
nc

y
(n

or
m

al
iz

ed
)

2.0

1.5

1.0

A B C D

YCSB workload specification

query operation

E F

0.5

0

tr
an

sa
ct

io
n

ra
te

 (n
or

m
al

iz
ed

)

FIGURE 3: Performance and latency of the YCSB benchmark3

acmqueue | may-june 2023 84

memory

back end, which uses a red-black tree under PMDK; and
Twizzler, which uses a red-black tree with the invariant
pointer approach.

The invariant pointer approach outperforms every other
approach while providing the flexibility of “run anywhere”
invariant pointers. The graph on the bottom of figure 3
similarly shows that these invariant pointers provide lower
latency than other approaches because of the simplicity
of the programming model and the low overhead for
dereferencing pointers. PMDK, in particular, is significantly
slower because its pointers are 128 bits long, requiring
additional register space and memory operations to read
and dereference.

It is important to note that the PMDK and Twizzler
implementations are running the same back-end code,
with changes made only to accommodate the different
programming models; this shows the benefit of using 64-
bit pointers local to an object context rather than 128-bit
pointers, as PMDK does.

Elephance MemOS is a fork of Twizzler being developed
to run on CXL far memory devices. It will be ported
and optimized for the SoCs (systems-on-chip) used as
controllers in CXL-disaggregated memory nodes.

PROGRAMMING WITH MEMORY OBJECTS
AND INVARIANT POINTERS
For software developers, what does memory
disaggregation mean and how will systems be built around
it? The architecture of such systems will aim to hide the
details from the majority of programmers, so their code
will not need to change to run on these new systems.

10 of 19

acmqueue | may-june 2023 85

memory

There are three ways in which systems can be built
to provide disaggregated memory: application libraries,
modification to the operating system’s memory system,
and changes beneath the operating system at the
hardware layers, as seen in figure 4. In the figure, a set
of application servers is connected to a set of MemOS
nodes over a shared bus. Pointer-rich application data in
far memory lives on MemOS nodes. Pointers can be: (1)
inter-object and on the same device, (2) inter-object across
devices, or (3) intra-object.

It is likely that the first way that disaggregated memory
will be made available will be through application libraries
linked directly into the application, seen in (A) at the top of
figure 4. The memory shim acts as a specialized memory
allocator that knows how to handle remote memory using
a MAP (memory access protocol). The MAP may depend
on a current technology such as RDMA (remote direct
memory access), or may be something newer such as CXL3.

Many languages, such as Python, which depend on the
C library for memory, will be able to use the memory shim
to handle memory for objects in the language, freeing the
Python programmer from having to know anything about
disaggregated memory. For languages such as C and C++,
which handle pointers directly, the programmer will have
to work with the memory shim APIs in order to manage
remote memory. The prevalence of Python and similar
managed memory languages in big data and machine-
learning applications means that programmers in those
fields can use disaggregated memory in a transparent
way, no matter where the memory shim is located in the
software stack.

11 of 19

acmqueue | may-june 2023 86

memory

Extending the operating system’s virtual memory
system to integrate with the memory shim is the next
logical place to interpose disaggregated memory in the
stack, seen in (B) in figure 5. Again, the specific MAP is

application
server

(a)

application
server

memOS
node

memOS
node

application
server

application
server

(b)

application
server

memOS node memOS node

application
server

2

1
3

FIGURE 4: Example MemOS deployment

12 of 19

4

acmqueue | may-june 2023 87

memory

not exposed to the kernel developer, only the memory
shim APIs. The Linux operating system already has
HMM (heterogeneous memory management),8 which
is a natural place to slot in the memory shim. Once the
shim is integrated into the operating system itself, all
applications can use disaggregated memory transparently
without modifications to their source code or linking with
specialized libraries.

The deepest that far memory can be placed in the stack
is in the hardware itself. Memory controllers integrated
in CPUs from Intel and AMD are already starting to
support early versions of CXL disaggregated memory.
Future, more featureful controllers will present memory

application memory
shim

remote
memory

memory access
protocol

(a)

application operating
system

memory
shim

remote
memory

memory access
protocol

(b)

application operating
system

memory
controller

memory
shim

remote
memory

memory access
protocol

(c)

FIGURE 5: Extending the OS’s virtual memory system

13 of 19

5

acmqueue | may-june 2023 88

memory

to the operating system both locally and remotely in a
transparent manner, but, like the other two cases, will
require a MAP to be interposed between the hardware and
the remote memory. The protocol in this instance will be
CXL 3.

While putting the memory shim into hardware will
likely result in the highest bandwidth, lowest latency, and
maximum portability, there are reasons to continue to use
a memory shim as a linked library into the software. First
and foremost is the level of control that linking directly
to the memory shim gives to the programmer. Once such
functionality is embedded into the operating system or
the memory controller, application programmers will lose
control and visibility into the remote memory system.
While many will be happy not to have to manage memory
on their own, applications will remain where such control
is a feature. Novel memory architectures for distributed
memory must first be tried in software, and some may be
too specialized ever to be implemented in hardware.

Consider a memory system where pointers are globally
invariant, which will be possible with MemOS but is not yet
common in pointer-based systems. Building and debugging
such a system in software makes it possible to rapidly
iterate on the design—impossible in a memory controller
and certainly more difficult to debug in the operating
system. Applications that can use globally invariant
pointers have distinct advantages because computation
can take place on any node without the application having
to know where a pointer might reside. Furthermore, it will
be possible to move code, rather than data, to achieve
computational efficiency—again, because no matter which

14 of 19

acmqueue | may-june 2023 89

memory

compute node a pointer resides on, the pointer itself is the
global handle that computation depends on, rather than an
address in local memory, as things stand today.

KEY TAKEAWAYS
Effectively exploiting emerging far-memory technology
requires consideration of operating on richly connected
data outside the context of the parent process. Operating-
system technology in development offers help by exposing
abstractions such as memory objects and globally
invariant pointers that can be traversed by devices
and newly instantiated compute. Such ideas will allow
applications running on future heterogeneous distributed
systems with disaggregated memory nodes to exploit
near-memory processing for higher performance and to
independently scale their memory and compute resources
for lower cost.

References
1. Al Maruf, H., et al. 2023. TPP: transparent page

placement for CXL-enabled tiered-memory. In
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems 3, 742–755; https://dl.acm.org/
doi/10.1145/3582016.3582063.

2. Berger, D. S., et al. 2023. Design tradeoffs in CXL-
based memory pools for public cloud platforms. IEEE
Micro 43(2), 30–38; https://dl.acm.org/doi/abs/10.1109/
MM.2023.3241586.

3. Bittman, D., et al. 2020. Twizzler: a data-centric OS
for non-volatile memory. In Proceedings of the Usenix

15 of 19

https://dl.acm.org/doi/10.1145/3582016.3582063
https://dl.acm.org/doi/10.1145/3582016.3582063
https://dl.acm.org/doi/abs/10.1109/MM.2023.3241586
https://dl.acm.org/doi/abs/10.1109/MM.2023.3241586

acmqueue | may-june 2023 90

memory

Annual Technical Conference; https://dl.acm.org/doi/
pdf/10.5555/3489146.3489151.

4. Dongarra, J. 2021. A not so simple matter of software.
ACM Turing Award lecture; https://www.youtube.com/
watch?v=cSO0Tc2w5Dg.

5. Duraisamy, P., et al. 2023. Towards an adaptable
systems architecture for memory tiering at warehouse-
scale. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems 3, 727–741; https://
dl.acm.org/doi/10.1145/3582016.3582031.

6. Hsieh, K., et al. 2016. Accelerating pointer chasing
in 3D-stacked memory: challenges, mechanisms,
evaluation. IEEE 34th International Conference on
Computer Design (ICCD), 25–32; https://ieeexplore.ieee.
org/document/7753257.

7. Jennings, S. 2013. The zswap compressed swap cache.
LWN.net; https://lwn.net/Articles/537422/.

8. Kernel Development Community. Heterogeneous
memory management. The Linux Kernel 5.0.0;
https://www.kernel.org/doc/html/v5.0/vm/hmm.html.

9. Mehra, P., Coughlin, T. 2022. Taming memory with
disaggregation. Computer 55(9), 94–98;
https://ieeexplore.ieee.org/document/9869614.

10. Michelogiannakis, G., et al. 2022. A case for intra-rack
resource disaggregation in HPC. ACM Transactions on
Architecture and Code Optimizations 19(2), 1–26; https://
dl.acm.org/doi/10.1145/3514245.

11. Rodrigues, A., Gokhale, M., Voskuilen, G. 2019. Towards
a scatter-gather architecture: hardware and software
issues. In Proceedings of the International Symposium

16 of 19

https://dl.acm.org/doi/pdf/10.5555/3489146.3489151
https://dl.acm.org/doi/pdf/10.5555/3489146.3489151
https://www.youtube.com/watch?v=cSO0Tc2w5Dg
https://www.youtube.com/watch?v=cSO0Tc2w5Dg
https://dl.acm.org/doi/10.1145/3582016.3582031
https://dl.acm.org/doi/10.1145/3582016.3582031
https://ieeexplore.ieee.org/document/7753257
https://ieeexplore.ieee.org/document/7753257
https://lwn.net/Articles/537422/
https://www.kernel.org/doc/html/v5.0/vm/hmm.html
https://ieeexplore.ieee.org/document/9869614
https://dl.acm.org/doi/10.1145/3514245
https://dl.acm.org/doi/10.1145/3514245

acmqueue | may-june 2023 91

memory

on Memory Systems, 261–271; https://dl.acm.org/
doi/10.1145/3357526.3357571.

12. Ruan, Z. et al. 2020. AIFM: high-performance,
application-integrated far memory. In Proceedings
of the 14th Usenix Symposium on Operating Systems
Design and Implementation (OSDI); https://dl.acm.org/
doi/pdf/10.5555/3488766.3488784.

13. Ruan, Z., et al. 2023. Nu: achieving microsecond-
scale resource fungibility with logical processes.
In Proceedings of the 20th Usenix Symposium on
Networked Systems Design and Implementation (NSDI);
https://www.usenix.org/system/files/nsdi23-ruan.pdf.

14. Zhang, Q., et al. 2022. CompuCache: remote computable
caching using spot VMs. 12th Annual Conference on
Innovative Data Systems Research (CIDR); https://www.
cidrdb.org/cidr2022/papers/p31-zhang.pdf.

15. Zhang, Q., et al. 2022. Optimizing data-intensive
systems in disaggregated data centers with Teleport.
In Proceedings of the International Conference on
Management of Data (SIGMOD); https://dl.acm.org/
doi/10.1145/3514221.3517856.

16. Zhou, Y., et al. 2022. Carbink: fault-tolerant far memory. In
Proceedings of the 16th Usenix Symposium on Operating
Systems Design and Implementation (OSDI); https://www.
usenix.org/system/files/osdi22-zhou-yang.pdf.

Ethan Miller has been a member of the technical staff at Pure
Storage since 2009. He is a professor emeritus in computer
science and engineering at the University of California, Santa
Cruz, where he held the Veritas Presidential Chair in Storage;
founded the Center for Research in Storage Systems; and

17 of 19

https://dl.acm.org/doi/10.1145/3357526.3357571
https://dl.acm.org/doi/10.1145/3357526.3357571
https://dl.acm.org/doi/pdf/10.5555/3488766.3488784
https://dl.acm.org/doi/pdf/10.5555/3488766.3488784
https://www.usenix.org/system/files/nsdi23-ruan.pdf
https://www.cidrdb.org/cidr2022/papers/p31-zhang.pdf
https://www.cidrdb.org/cidr2022/papers/p31-zhang.pdf
https://dl.acm.org/doi/10.1145/3514221.3517856
https://dl.acm.org/doi/10.1145/3514221.3517856
https://www.usenix.org/system/files/osdi22-zhou-yang.pdf
https://www.usenix.org/system/files/osdi22-zhou-yang.pdf

acmqueue | may-june 2023 92

memory

led the development of the Ceph distributed file system, the
Twizzler operating system. He was a member of the RAID
project during his PhD work at UC Berkeley. His research
interests include non-volatile memory systems, security and
reliability for storage systems, and scalable and long-term
storage systems.

George Neville-Neil works on networking and operating
system code for fun and profit. He also teaches courses on
various subjects related to programming. His interests are
computer security, operating systems, networking, time
protocols, and the care and feeding of large code bases. He is
the author of The Kollected Kode Vicious and a co-author of
The Design and Implementation of the FreeBSD Operating
System. He earned his bachelor’s degree at Northeastern
University, Boston. His software was deployed in NASA’s
missions to Mars, as part of VxWorks. He is an avid bicyclist
and traveler who currently lives in New York City.

Achilles Benetopoulos is a PhD student at UC Santa Cruz,
working at the intersection of distributed systems, databases,
and programming languages. Previously, he spent a few years
working as a software engineer up and down the stack for
several companies.

Pankaj Mehra, founder of Elephance Memory, has held
executive technology and management positions in memory
and storage industries since 2013. He was previously VP of
product planning at Samsung, a senior fellow at SanDisk and
Western Digital, and a distinguished technologist at Hewlett-
Packard. Pankaj has held faculty and visiting positions at IIT

18 of 19

acmqueue | may-june 2023 93

memory

Delhi, UC Santa Cruz, and the IBM TJ Watson Research Center.
He is an author/inventor with more than 100 books, papers,
and patents about servers, storage, interconnects, and AI.

Daniel Bittman is a co-founder of Elephance Memory and
principal maintainer of the Twizzler operating system. He
received his PhD in CS from UC Santa Cruz, studying under
Peter Alvaro and Ethan Miller. When not doing operating
systems research, he can be found hiking in the mountains.
Copyright © 2023 held by owner/author. Publication rights licensed to ACM.

19 of 19

CONTENTS2

SHAPE THE FUTURE OF COMPUTING!

Join ACM today at acm.org/join

BE CREATIVE.
STAY CONNECTED.
KEEP INVENTING.

